Congratulations!

TRAINPOWER 5

OPERATING INSTRUCTIONS

Please read instructions thoroughly before making any hookups to your system.

USE TO PREVENT ELECTRIC SHOCK.

PRECAUTIONS SHOULD BE OBSERVED DURING HANDLING AND OPERATING PRODUCTS.

NOT RECOMMENDED FOR CHILDREN UNDER 12 YEARS OF AGE.

SUCCESSFUL INSTALLATION DEPENDS ON A PROPER INSTALLATION.

INPUT (115VAC, 60HZ).

CAUTION: ELECTRICALLY OPERATED PRODUCTS.

TOTAL OUTPUT 50VA.

120VAC (200WATT), 240VAC (50WATT).

TOTAL OUTPUT 35VA.

120VAC (200WATT), 240VAC (50WATT).

If necessary, reconnect your unit until reattached to the original circuit and conform to your local authority.

Do not install your lamp unattended.

PROTECT YOURSELF FROM INJURY AND DAMAGE.

FOR YOUR PROTECTION.

Please note: With any electrically operated unit, it is extremely important to properly install it before connecting or disconnecting any other equipment. Be sure to select models suitable for your equipment. Never use models of your TRAINPOWER 5 that are not compatible with your equipment. This will ensure that your TRAINPOWER 5 will operate correctly and efficiently.
Wiring for a reverse loop.

Remote controller socket.

In the absence of the remote controller, the direction of the movement is determined by the reversing switch in the trainpower. The trainpower is reversed when the reversing switch is moved from the "normal" position to the "reverse" position. The reversing switch is located on the back panel of the trainpower.

Wiring diagram:

- **Positive rail** connected to the rightmost terminal on the trainpower.
- **Negative rail** connected to the leftmost terminal on the trainpower.

Direction of travel:

- **Forward direction:** Positive rail is the lead rail, negative rail is the trailing rail.
- **Reverse direction:** Positive rail is the trailing rail, negative rail is the lead rail.

Operation notes:

- The reversing switch is a toggle switch located on the back panel of the trainpower.
- The reversing switch is used to change the direction of travel.
- When the reversing switch is moved to the "reverse" position, the direction of travel is reversed.

Troubleshooting:

- If the trainpower does not move in the expected direction, check the connections and ensure that the reversing switch is properly set.
- If the trainpower moves in the wrong direction, check the polarity of the power supply and the connections to the trainpower.

Power switch:

- **On (Normal):** Power is supplied to the trainpower.
- **Off:** Power is disconnected from the trainpower.

Maintenance switch:

- **On:** The trainpower is in operation.
- **Off:** The trainpower is disconnected from the power supply.

Trainpower settings:

- **Normal:** Power is supplied to the trainpower.
- **Off:** Power is disconnected from the trainpower.

Trainpower specifications:

- **Power supply:** 120V AC, 60Hz
- **Output power:** 1000W
- **Current:** 10A

Trainpower care:

- Keep the trainpower clean and free of debris.
- Avoid exposure to extreme temperatures.
- Store the trainpower in a dry, stable environment.

Warranty:

Contact the manufacturer for warranty information.
These are for a voltage meter hookup.

REMOTE SW: Located on the right side of the panel. It is used to turn the controller on or off.

POWER MONITOR: Located at the top of the panel. It displays the current power level.

OUTPUT TERMINALS: Located on the left side of the panel. They are used to connect the output devices.

INDICATORS: Located on the right side of the panel. They display the status of the controller.

OVERLOAD INDICATORS: Located on the bottom of the panel. They indicate if the controller is overloaded.

Pilot Lamp: Located on the bottom of the panel. It indicates if the controller is in the proper mode.

Reverse Loop Direction: Located on the bottom of the panel. It indicates the direction of the reverse loop.

The controller is used to control the speed of the locomotive. The speed is controlled by the throttle and deceleration.

The main components of the controller are the speed control dial and the output terminal. The speed control dial adjusts the speed of the locomotive, while the output terminal sends the signal to the locomotive to execute the speed change.

If there is a problem with the controller, it is important to check the output terminals and the remote switch. If the problem persists, it may be necessary to contact a professional for further assistance.

To use the controller, first turn it on by setting the remote switch to the ON position. The controller will then be ready to use.

When controlling the locomotive, it is important to monitor the output terminals and the reverse loop direction. This will help ensure that the locomotive is running smoothly and efficiently.

If there is a problem with the locomotive, it is important to check the output terminals and the reverse loop direction. If the problem persists, it may be necessary to contact a professional for further assistance.
Terminals 3 and 4 (Terminal 4 is Labeled with a Minus (-) Sign)

These terminals are shorted with a lug. If the lug is removed, the unit will not function. These terminals are for an ammeter connection. If you so desire to connect an ammeter, disconnect the shorting lug and attach an ammeter between Terminals 3 and 4. Make certain that correct polarity is maintained.

Terminals 5 and 6 (Track D.C.)

These two terminals should be connected to the track mainline. Direction is controlled by the buttons on the front panel. If the button position does not correspond to the train direction, just reverse the two wires to these terminals. The speed control will control the output from these terminals.

Terminals 7 and 8 (Fixed D.C.)

These two terminals are supplied for expanding your layout. If, at some later date, you wish to operate another locomotive and have individual control of the speed and direction, simply connect a Model Rectifier Corporation Cab Control (speed control, reversing switch and circuit breaker) to these terminals and you are in operation. NOTE: The separate section of track that will be controlled by the cab control must be completely insulated electrically (both rails).

Terminals 9 and 10 (Accessories A.C.)

These two terminals are for use with AC accessories only, such as switch machine controls, lights, etc. Hook-up polarity does not matter.

Terminals 11 and 12 (Reverse Loop)

These two terminals, controlled by the reverse loop direction switch on the front panel, are for attachment to a reversing loop, which will allow you to turn your locomotive around and travel in the opposite direction on the mainline. Operation is the same as the Track D.C. terminals. NOTE: Reverse loop must be completely insulated electrically. See Reverse loop illustration.

INERTIA CONTROLS

Acceleration

By rotating this control clockwise, you will decrease the amount of time the locomotive will take until reaching the greater speed you have determined by the throttle setting.

Deceleration

By rotating this control clockwise, you will decrease the amount of time the locomotive will take until it slows down to the speed you have determined by the throttle setting.

NOTE: By turning the throttle up or down, the locomotive speed will remain unchanged until the "LIGHT TOUCH" buttons are depressed (while in the Momentum ON mode).

ACCELERATION (ACCEL) - LIGHT TOUCH BUTTON

By depressing this button, the locomotive will respond by increasing speed. The rate in which the speed is increased is determined by the Acceleration inertia control setting.

DECELERATION (DECCEL) - LIGHT TOUCH BUTTON

By depressing this button, the locomotive will respond by decreasing speed. The rate in which the speed is decreased is determined by the Deceleration inertia control setting.

NOTE: These buttons must be continually depressed or intermittently depressed until desired locomotive speed is attained.

The MOMENTUM SWITCH, the INERTIA CONTROLS, and the LIGHT TOUCH BUTTONS will add substantially to your Model Railroading enjoyment. When a real locomotive is given an increase in throttle setting, there is a lag time or delay. Similarly, when braking a real locomotive, a considerable distance is needed in order to stop. Since lightweight models do not mimic this delay on their own, the TRAINPOWER 5 circuitry is used to create it electrically.